Salmonella enterica Enteritidis biofilm formation and viability on regular and triclosan-impregnated bench cover materials.

نویسندگان

  • Diana Rodrigues
  • Pilar Teixeira
  • Rosário Oliveira
  • Joana Azeredo
چکیده

Contamination of food contact surfaces by microbes such as Salmonella is directly associated with substantial industry costs and severe foodborne disease outbreaks. Several approaches have been developed to control microbial attachment; one approach is the development of food contact materials incorporating antimicrobial compounds. In the present study, Salmonella enterica Enteritidis adhesion and biofilm formation on regular and triclosan-impregnated kitchen bench stones (silestones) were assessed, as was cellular viability within biofilms. Enumeration of adhered cells on granite, marble, stainless steel, and silestones revealed that all materials were prone to bacterial colonization (4 to 5 log CFU/cm(2)), and no significant effect of triclosan was found. Conversely, results concerning biofilm formation highlighted a possible bacteriostatic activity of triclosan; smaller amounts of Salmonella Enteritidis biofilms were formed on impregnated silestones, and significantly lower numbers of viable cells (1 × 10(5) to 1 × 10(6) CFU/cm(2)) were found in these biofilms than in those on the other materials (1 × 10(7) CFU/cm(2)). All surfaces tested failed to promote food safety, and careful utilization with appropriate sanitation of these surfaces is critical in food processing environments. Nevertheless, because of its bacteriostatic activity, triclosan incorporated into silestones confers some advantage for controlling microbial contamination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biofilm formation by Salmonella enterica serovar Typhimurium and Escherichia coli on epithelial cells following mixed inoculations.

Biofilms were formed by inoculations of Salmonella enterica serovar Typhimurium and Escherichia coli on HEp-2 cells. Inoculations of S. enterica serovar Typhimurium and E. coli resulted in the formation of an extensive biofilm of S. enterica serovar Typhimurium. In experiments where an E. coli biofilm was first formed followed by challenge with S. enterica serovar Typhimurium, there was signifi...

متن کامل

Inhibition of the early stage of Salmonella enterica serovar Enteritidis biofilm development on stainless steel by cell-free supernatant of a Hafnia alvei culture.

Compounds present in Hafnia alvei cell-free culture supernatant cumulatively negatively influence the early stage of biofilm development by Salmonella enterica serovar Enteritidis on stainless steel while they also reduce the overall metabolic activity of S. Enteritidis planktonic cells. Although acylhomoserine lactones (AHLs) were detected among these compounds, the use of several synthetic AH...

متن کامل

Detection of Cell Surface Hydrophobicity, Biofilm and Fimbirae Genes in Salmonella Isolated from Tunisian Clinical and Poultry Meat

BACKGROUND The aim of this study was to evaluate the ability of 15 serotypes of Salmonella to form biofilm on polystyrene, polyvinyl chloride (PVC) and glass surfaces. . METHODS Initially slime production was assessed on CRA agar and hydrophobicity of 20 Salmonella strains isolated from poultry and human and two Salmonella enterica serovar Typhimurium references strains was achieved by microb...

متن کامل

Comparative analysis of Salmonella enterica serovar Typhimurium biofilm formation on gallstones and on glass.

In this study, the roles of global regulators, motility, lipopolysaccharide, and exopolysaccharides were further characterized with respect to biofilm formation on both gallstones and glass surfaces. These studies show the complex nature of biofilms and demonstrate that characteristics observed for each biofilm are unique to the particular culture condition.

متن کامل

Roles of the spiA gene from Salmonella enteritidis in biofilm formation and virulence

Salmonella enteritidis has emerged as one of the most important food-borne pathogens for humans, and the formation of biofilms by this species may improve its resistance to disadvantageous conditions. The spiA gene of Salmonella typhimurium is essential for its virulence in host cells. However, the roles of the spiA gene in biofilm formation and virulence of S. enteritidis remain unclear. In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of food protection

دوره 74 1  شماره 

صفحات  -

تاریخ انتشار 2011